
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Mutation Testing for Unity 3D

by

Omaid Ghayyur

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Computing

Department of Computer Science

2018

www.cust.edu.pk
www.cust.edu.pk
omaid.ghayyur@yahoo.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Copyright c© 2018 by Omaid Ghayyur

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

ii

I dedicate my dissertation work to my family, teachers and friends. A special

feeling of gratitude is for my loving parents for their love, endless support and

encouragement.

CAPITAL UNIVERSITY OF SCIENCE & TECHNOLOGY

ISLAMABAD

CERTIFICATE OF APPROVAL

Mutation Testing for Unity 3D

by

Omaid Ghayyur

MCS163026

THESIS EXAMINING COMMITTEE

S. No. Examiner Name Organization

(a) External Examiner Dr. Muhammad Uzair Khan FAST, Islamabad

(b) Internal Examiner Dr. Arshad Islam CUST, Islamabad

(c) Supervisor Dr. Aamir Nadeem CUST, Islamabad

Dr. Aamir Nadeem

Thesis Supervisor

October, 2018

Dr. Nayyer Masood Dr. Muhammad Abdul Qadir

Head Dean

Dept. of Computer Science Faculty of Computing

October, 2018 October, 2018

iv

Author’s Declaration

I, Omaid Ghayyur hereby state that my MS thesis titled “Mutation Testing

for Unity 3D” is my own work and has not been submitted previously by me for

taking any degree from Capital University of Science and Technology, Islamabad

or anywhere else in the country/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my MS Degree.

Omaid Ghayyur

Registration No: MCS163026

v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “Mutation

Testing for Unity 3D” is solely my research work with no significant contribution

from any other person. Small contribution/help wherever taken has been dully

acknowledged and that complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and Capital University of Science

and Technology towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material

used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of MS Degree, the University reserves the right to with-

draw/revoke my MS degree and that HEC and the University have the right to

publish my name on the HEC/University website on which names of students are

placed who submitted plagiarized work.

Omaid Ghayyur

Registration No: MCS163026

vi

Acknowledgements

All worship and praise is for ALLAH (S.W.T), the creator of whole worlds. First

and leading, I would like to say thanks to Him for providing me the strength,

knowledge and blessings to complete this research work. Secondly, special thanks

to my respected supervisor Dr. Aamer Nadeem for his assistance, valuable time

and guidance. I sincerely thank him for his support, encouragement and advice in

the research area. He enabled me to develop an understanding of the subject. He

has taught me, both consciously and unconsciously, how good experimental work

is carried out. Sir you will always be remembered in my prayers. I would also like

to thank all members of CSD research group for their comments and feedback on

my research work.

I am highly beholden to my parents, for their assistance, support (moral as well as

financial) and encouragement throughout the completion of this Master of Science

degree. This all is due to love that they shower on me in every moment of my life.

No words can ever be sufficient for the gratitude I have for my parents. I hope I

have met my parents’ high expectations.

I pray to ALLAH (S.W.T) that may He bestow me with true success in all fields

in both worlds and shower His blessed knowledge upon me for the betterment of

all Muslims and whole Mankind.

Aameen

Omaid Ghayyur

Registration No: MCS163026

vii

Abstract

To verify the correctness of a software and to check the requirements fulfilled,

software testing is performed. The effective technique use to check the adequacy

of test suite is known as Mutation testing. In mutation testing, multiple variants

known as mutants of programs are created using a set of defined mutation oper-

ators from the original program. Test cases are run on mutants to verify if the

changes are detected or not. Each mutant is executed for each test case to identify

a change in the mutant. Mutant is said to be killed if the change is detected by test

case otherwise it is considered as alive. The effectiveness of test suite is calculated

from the number of mutants killed. The mutation score of test suite is measured

as the ratio of number of the mutants killed to the total number of mutants. Re-

search has been done on the mutation testing of the JAVA and other programming

languages. A very little work is being done for the mutation testing of the mobile

applications and programming languages used for mobile application development.

Recently, work is done on the mutation testing of the ANDROID programming

language. The focus of our research is on Unity 3D mutation testing by proposing

mutation operators of the Unity 3D C# programming language used for the mo-

bile game development. Nowadays, Unity 3D C# programming language is most

commonly used for mobile games development. Unity 3D C# mutation operators

will be used to seed the faults in Unity 3D C# games source scripts containing the

special programming features that are not covered by traditional C# mutation

operators.

In our work, we have proposed a set of Unity 3D C# mutation operators to ad-

dress special programming features of Unity 3D C# programming language used

for the mobile game development. We have implemented a simple JAVA tool,

which is used to generate the mutants of Unity 3D C# source scripts with the

proposed mutation operators. Test cases are executed for each mutant during ex-

perimentation. Evaluation of the proposed Unity 3D C# mutation operators is

performed with traditional C# programming mutation operators using mutation

score. Based on mutation score, it is concluded that the faults seeded using new

viii

proposed Unity 3D C# mutation operators are not detected by the traditional

mutation operators as strong mutants are generated with proposed mutation op-

erators. New additional test cases with strong coverage criterion are required to

detect the Unity 3D specific faults seeded with proposed mutation operators.

Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgements vi

Abstract vii

List of Figures xii

List of Tables xiii

List of Abbreviations xiv

1 Introduction 1

1.1 Overview . 1

1.2 Software Testing . 1

1.3 Mutation Testing . 3

1.4 Mutation Testing of Mobile Applications 5

1.5 Problem Statement of Thesis . 9

1.6 Research Questions . 10

1.7 Research Objectives . 11

1.8 Research Contribution . 11

1.9 Thesis Organization . 11

2 Literature Review 12

2.1 Mobile Applications Mutation Testing 12

2.1.1 Android Applications Mutation Testing 13

2.2 C# Mutation Advance Mutation Operators 18

2.3 Critical Analysis . 20

2.4 Gap Analysis . 20

3 Proposed Solution 22

3.1 Game Development Process . 24

3.2 Unity 3D Special Programming Features 26

ix

x

3.2.1 Rigid Bodies . 26

3.2.2 Coroutines . 27

3.2.3 Player Preferences . 28

3.2.4 Game Objects . 28

3.2.5 Tags . 29

3.2.6 Transform . 29

3.2.7 Game Scenes . 30

3.2.8 Game Cameras . 30

3.2.9 Canvas . 30

3.2.10 Invoke . 30

3.2.11 Raycast . 31

3.3 Unity 3D Features Categorization 32

3.4 Proposed Mutation Operators . 33

3.4.1 Changing Parameter Name of PlayerPrefs (PPC) 34

3.4.2 Removing Parameter of PlayerPrefs (PPR) 35

3.4.3 Invalid Parameter of PlayerPrefs (PPI) 36

3.4.4 Changing Parameter Values of Invoke Function (IPC) 37

3.4.5 Invalid Function Call for Coroutine (CIC) 38

3.4.6 Disabling Game Object (DGO) 39

3.4.7 Game Object Tag Name Mutation Operators 40

3.4.7.1 Game Objects Tags Matching (MGOT) 40

3.4.7.2 Finding Game Object with Tags (FGOT) 41

3.4.8 Life Cycle Method Replacement (LCR) 42

3.4.9 Invalid Scene Loading (ISL) 43

3.4.10 Changing Main Game Camera Type (CGC) 44

3.4.11 OnClick Event Replacement (OCR) 45

3.4.12 Disabling Canvas Panel View (DCV) 45

3.4.13 Game Orientation Lock (LGO) 46

3.4.14 Null Pointer Exception (NPE) 46

3.4.15 XML Manifest Activity Permission Deletion (APD) 47

4 Implementation 49

4.1 Implementation . 49

4.1.1 Overview . 49

4.2 Mutant Generation Process . 52

4.2.1 Algorithm Description . 52

4.3 Analysis Process . 53

4.4 Tool Usage . 53

4.4.1 Mutant Generation Interface 54

4.5 Test Case Execution Process . 56

5 Results and Discussion 58

5.1 Analysis Process . 58

5.2 Case Studies . 60

xi

5.3 Mutants Generation . 67

5.4 Comparison and Analysis . 69

6 Conclusion and Future Work 76

Bibliography 78

List of Figures

1.1 General Process of Mutation Testing 4

3.1 Proposed Solution Detailed Methodology 23

3.2 Game Development Process . 26

3.3 Identified Taxonomy of Unity 3D Faults 32

4.1 Generic tool architecture for mutants generation 50

4.2 Mutation Analysis Process for Unity 3D C# Games 51

4.3 Source Files Selection for Mutation Analysis 54

4.4 Mutation Operators Selection for Mutants Generation 55

4.5 Stats Display before Mutants Generation 55

4.6 Output of Original Program for Test Cases Execution 56

4.7 Output of Mutated Program for Test Case Execution 56

5.1 Results Analysis Process . 60

5.2 Archery 2D Game Google Play Store 62

5.3 Archery Game 2D Google Play Store Information 62

5.4 Tanks 3D Game Google Play Store 63

5.5 Tanks 3D Game Google Play Store Information 64

5.6 Monster Kill Shooting Adventure Google Play Store 65

5.7 Monster Kill Shooting Game Google Play Store Information 65

5.8 Mutants Generated Comparison with Traditional and Proposed Mu-
tation Operators . 68

5.9 Mutation Scores of Traditional C# Test Cases for Existing and
Proposed Operators . 71

5.10 Total Number of Mutants Generated with Traditional and Proposed
Mutation Operators . 71

5.11 Total Number of Mutants Killed Generated with Traditional and
Proposed Mutation Operators with New Test Cases 73

xii

List of Tables

2.1 Android programming features mutation operators 14

2.2 Android programming features mutation operators with categories . 15

2.3 C# Traditional and Advance Mutation Operators 18

3.1 List of Proposed Unity 3D C# Mutation Operators 33

5.1 Details of Unity 3D Games . 66

5.2 Mutants Generated with Existing and Proposed Mutation Operators 68

5.3 Mutation Analysis Results for C# and Unity 3D C# Mutation
Operators with Traditional C# Test Cases 70

5.4 Mutation Analysis Results for C# and Unity 3D C# Mutation
Operators with New Test Cases . 72

xiii

List of Abbreviations

3D 3 Dimensional

GUI Graphical user interface

I/O Input Output

API Application programming interface

iOS iPhone operating system

2D 2 Dimensional

A/I Activities and intents

A/P Android Programming

BES Back end service

C Connectivity

D Data/Object parsing and Format

DB Database

GP General programming

NFR Non-functional requirements

VR Virtual reality

AR Augmented reality

XML Extensible Markup Language

UI User interface

AI Artificial intelligence

VFX Visual effects

ED Unity editor

UP Unity programming

IDE Integrated development environment

HP Hewlett-Packard

xiv

xv

DDR Double data rate

AMD Advanced micro devices

Chapter 1

Introduction

1.1 Overview

In this current era of technology, demand of the software development has in-

creased due to the large dependency on the computers to perform the multiple

tasks. Dependency on the different types of software to perform critical tasks has

increased which include the systems like health care in which the monitoring of the

patients is performed automatically using the machines controlled by the software.

The use of machines for such critical and important tasks requires proper testing

of the software as the task performed is crucial to guide the doctors about the

patient condition at a certain time. Similarly, with the excessive use of the mobile

devices and internet everyone can access their bank accounts and can perform

multiple activities on their bank account which majorly include the transactions

of multiple types. Such systems require proper testing of the software including

the security testing to protect the confidential data of the users.

1.2 Software Testing

The process of system evaluation to check if its meets its original specified require-

ments or not is known as software testing. The process of testing mainly consists

1

Introduction 2

of validation and verification of the software system. The process of the finding

the bugs, errors or missing requirements of the developed system and software is

known as software testing. Software testing is used to know about the quality of

the product [1]. Software testing or software quality assurance importance can be

considered from the life critical systems like human kidney dialysis system, flight

engine control system [2].

Using software testing the reliability of the software is ensured as the work is being

performed by the software according to its requirements or not [3]. During the

software testing large amount of time and a lot of resources are consumed to ensure

the quality of the software [4]. Over 60% of the budget and half of the resources are

consumed in the software testing phase [5]. The testing of the software after the

development is an important phase, and work is being done to make the process of

the software testing cost effective. Black box and white box testing are the basic

testing techniques. Black box testing is also referred as functional testing while

white box testing is referred as structural testing. In the black box or functional

testing, the software functionality testing is performed while in the white box or

structural testing, the code testing of the software is performed [6]. Gray box

testing is referred as the combination of the black and white box testing. The

above testing techniques do not check the test cases effectiveness and adequacy as

these techniques are coverage based testing techniques [7].

Testing of the software can be performed at the unit level, integration level or

system level. The testing process is performed by the quality assurance engineer

or software tester [8]. The process of testing each developed module of the software

independently is known as unit testing. While integrating the single modules of

the system integration testing is performed as the errors or bugs can arise during

the integration process. Testing of the complete software after development is

known as system level testing [9].

Introduction 3

1.3 Mutation Testing

Mutation testing is a code-based testing technique in which faults are introduced

in the original program to measure the test suite effectiveness to detect those

faults [10]. Using the technique of the mutation testing, faults are introduced

in the original program to create the mutants using a set of defined mutation

operators. Mutation operators are defined as the operators used to introduce

a single change in each version of the original program. Mutant is defined as

the program which is generated as a result of the fault introduced in the original

program. Test cases are executed on the original and mutated programs with

the goal that different output will be observed on the test case execution for the

mutant as compared to the original program. Mutant is referred to be killed if the

output for the mutant is different from the original program. The mutant is said to

be live if it is not killed from the existing test cases. If the mutant is not killable

by any test case then it is called an equivalent mutant. Equivalent mutants

are syntactically different but semantically equivalent to the original program and

for this reason are not killed by any test case. Equivalent mutants cannot be

detected automatically as it is an undecidable problem [11]. Some of the mutants

do not compile and are known as still born. In the still born mutants the change

performed by the mutation operator makes the mutant syntactically incorrect.

Still born mutant can be avoided by properly defining the mutation operator [12].

Mutation score is calculated by executing all the mutants with the test cases which

indicates the quality of the test suite. The ratio of the number of mutants killed

by the total number of mutants except for the equivalent mutants is referred as

mutation score [13]. Main purpose of the mutation testing is to raise the score

to indicate the test suite efficiency which makes it sufficient to detect faults.

Mutation testing is used for two purposes:

1. It is used to either check the fault detection effectiveness of a test suite by

calculating the mutation score by the mutants killed

2. Or to guide test case generation to kill the mutants

Introduction 4

Commonly it is used to check the adequacy but can also be used to generate test

cases to improve the software quality. Figure 1.1 shows the general process of

mutation testing.

Figure 1.1: General Process of Mutation Testing

New test suites are designed and the quality of the existing test suites is evaluated

using mutation testing. Mutation testing can be applied to test the software at

the unit level and integration level which makes it a white box testing technique

[14]. Mutation testing helps the testing resource to generate effective test suites.

Mutation testing is not used to test the software directly, rather tests the test suite

of the software and helps to improve test cases to increase effectiveness of the test

suite. It is assumed that the test suite which detects more faults will also detects

potential faults of the software which in turns helps in the improvement of software

quality. The cost of mutation testing is high in terms of the mutants generation,

mutants compilation and execution with the test suite and identification of the

equivalent mutants and mutants analysis [15].

History of the mutation testing comes from way back as its being studied and used

from long time ago from 1970s. Many surveys related to mutation testing have

been conducted, and the first survey of mutation testing was performed in 1979

[16]. Survey on very specific sub area of weak, strong and firm mutation testing

Introduction 5

approaches is performed in 1988 [17]. Introductory chapters on mutation testing

are included in the books by multiple authors [18] [19].

We can use mutation testing for testing software at a unit level and integration

level [20] [21]. Mutation testing has been applied to many languages, including

Fortran 77 [22] [23], C [24], Java [25] [26], Javascript [27], AspectJ [28], and web

applications [29]. Several papers also extend mutation analysis to model-level,

such as Finite State Machines [30] [31], statecharts [32], Petri nets [33], timed

automata [34], and Aspect-oriented models [35]. For GUI-based applications, a

specific set of mutation operators [36] are also proposed.

Mutation testing has certain drawbacks even though it is a very effective tech-

nique; main drawback of the technique is that it has a high computational cost for

executing enormous number of mutants against a test suite. Issue of equivalent

mutants also exists in mutation testing which cannot be killed [35]. Mutation

testing also involves a lot of human effort which refers to the human oracle prob-

lem [36]. Oracle problem refer to a process of comparing outputs of the original

and mutated program during test case execution. It is most expensive part of the

testing activity. To overcome these issues of the mutation testing is impossible

but various studies have been done minimize and reduce the computation cost of

mutation testing [37].

1.4 Mutation Testing of Mobile Applications

So far, little work has been done by researchers in the area of mobile applications

mutation testing which included only the Android applications mutation testing in

recent years. Android is the most popular mobile operating system. Android mo-

bile applications consist of specific characteristics which are not available for simple

JAVA or other language applications. The specific characteristics of android ap-

plications are GUI-centric design and interaction, event driven programming, inter

processes communication, interaction with backend and local services, permission

Introduction 6

mechanism, software development kit version compatibility. These special An-

droid programming features can lead to application failure. Deng et al., (2017)

proposed eleven mutation operators for Android applications by applying on new

Android programming features. Mutation operators are proposed for Android apps

elements comprising of intent, activity lifecycle, event handler and XML [38]. Fol-

lowing the work of Deng et al., (2017) Linares-Vásquez et al., (2017) worked on

the Android applications mutation operators and proposed 38 new mutation oper-

ators according to the faults taxonomy defined by them for Android applications

[12]. The faults taxonomy consists of Activities and Intents, Back-end Services,

Collections and Strings, Data/Objects Parsing and Format, Threading, Android

Programming, Non-Functional Requirements, GUI, Input Output (I/O), Device or

Emulator, API and Libraries, Connectivity, Database and General Programming.

As Unity 3D supports cross platform development and games developed can eas-

ily packaged for deployment on the devices including Android and iOS. Games

development in Unity game engine is different as compared to the application de-

velopment. In Unity game development Unity Editor is used for scene creation

which contains the game environment, game objects and GUI while the script-

ing is done on Mono Developer which is a Unity scripting tool. The scripts for

the game are attached with the scenes, game objects, GUI from Unity editor.

The game development in Unity uses special programming features and imple-

mentation characteristics as games are actually event based programs with GUI

design and interaction with multiple back end processes to handle event system

and input is given by the users. The main features of the game development are

scenes creation in Unity editor, game objects initialization, physics implementa-

tion, animations, handling input touch events, game logic, scenes rendering, GUI

rendering, coroutines, lifecycle methods handling, decommissioning, backend and

local services, permissions, software development kit version compatibility. Fail-

ure may occur because of incorrect use of these special features used for game

development. Unity 3D supports the game scripting in 3 different programming

languages which are C#, JavaScript and Boo. The most commonly used language

is C# used by the developers for Unity 3D. The traditional mutation operators

Introduction 7

are not sufficient to cover these special programming features of Unity 3D game

development. Some examples of the Unity 3D features and faults that are not

covered by the existing mutation operators are as follows:

Example 1: Unity 3D Physics, Life Cycle Event use Code Snippet

The code is used to move a rigid body game object in an environment in forward

direction.

pub l i c c l a s s ExampleClass : MonoBehaviour

{

pub l i c Vector3 po int ;

pub l i c Rigidbody body ;

void Star t ()

{

body = GetComponent<Rigidbody >() ;

}

void FixedUpdate ()

{

body . MovePosition (trans form . p o s i t i o n + transform . forward ∗

Time . deltaTime) ;

}

}

The above Unity code uses two different Unity 3D lifecycle functions that are

Start() and FixedUpdate(), if we replace these lifecycle functions with other life-

cycle functions like replace Start() with Awake() and FixedUpdate() with Up-

date() and LateUpdate() functions, the behavior of the game will be affected due

to difference in the execution sequence of the lifecycle functions.

Example 2: Unity 3D Coroutine Use for Time Delay Code Snippet

Coroutines are used to create time delay in the code execution. In the example

below coroutines are used in multiple ways to display the text on Unity editor

after the delay of few seconds.

Introduction 8

pub l i c c l a s s ExampleClass : MonoBehaviour

{

p r i v a t e IEnumerator co rout ine ;

void Sta r t ()

{

pr in t (” S ta r t i ng ” + Time . time + ” seconds ”) ;

co rout ine = WaitAndPrint (5 . 0 f) ;

StartCorout ine (co rout ine) ;

p r i n t (” Coroutine s t a r t e d ”) ;

}

p r i v a t e IEnumerator WaitAndPrint (f l o a t waitTime)

{

y i e l d re turn new WaitForSeconds (waitTime) ;

p r i n t (” Coroutine ended : ” + Time . time + ” seconds ”) ;

}

}

The above Unity code uses Coroutine programming feature of Unity 3D to dis-

play the text, if the parameter value of StartCorotuine() method is changed, the

behavior of game will be affected.

Example 3: Unity 3D Game Object Collision Detection Code Snippet

Code initiate the explosion prefab when the game object collide the surface and

after explosion game object get destroyed.

pub l i c c l a s s ExampleClass : MonoBehaviour

{

pub l i c Transform exp lo s i onPre fab ;

void OnCol l i s ionEnter (C o l l i s i o n c o l l i s i o n)

{

ContactPoint contact = c o l l i s i o n . contac t s [0] ;

Quaternion ro t = Quaternion . FromToRotation (Vector3 . up , contact . normal) ;

Introduction 9

Vector3 pos = contact . po int ;

I n s t a n t i a t e (exp los ionPre fab , pos , ro t) ;

Destroy (gameObject) ;

}

}

The above Unity code uses OnCollisionEnter() to check the collision of game object

with other objects in game environment, by replacing OnCollisionEnter() function

with OnTriggerEnter(), collision of the objects will not be detected which will affect

the game behavior and may cause the run time error.

1.5 Problem Statement of Thesis

Unity 3D games which are developed for the mobile devices involve several new

programming features and a very little information is available to test them which

results in an ineffective testing. Unity 3D platform supports 3D and 2D games

development for the cross platforms and special programming features which are

used are game objects, physics implementation, handling input touch events, game

logic, scenes rendering, GUI rendering, coroutines, lifecycle methods, decommis-

sioning, animations, backend and local services, permissions, software development

kit version compatibility. These special programming features require the muta-

tion operators for the evaluation of the test suite adequacy as these features are

not covered by the existing mutation operators. No mutation operators are defined

for the Unity 3D special programming features which can measure the test suite

effectiveness. So, to assess the effectiveness of the test cases, a need of novel and

effective Unity 3D mutation operators with the guide of the test case generation

to kill mutants is required.

Introduction 10

1.6 Research Questions

In this research work, we will propose the mutation operators for the Unity 3D

C# programming language special features to increase the effectiveness of the test

suite. However, the following questions must be taken into account:

RQ. 1: Can we use the traditional C# programming language and Android mu-

tation operators for Unity 3D?

To answer this question, the special programming features used for the Unity 3D

C# are studied and explained in the proposed solution which are not covered by

the traditional C# and Android mutation operators.

RQ. 2.1: What are the special features of the Unity 3D C# programming language

which are not covered by the traditional C# and Android mutation operators?

To answer this research question, the game development process is defined in the

proposed solution with the special programming features and Unity implementa-

tion characteristics used for game development using C# language.

RQ. 2.2: How to design new mutation operators for the Unity 3D C# special

programming features?

To answer this research question, in the proposed solution the special programming

features of the Unity 3D C# are explained. Due to incorrect use of those explained

special programming features faults may occur. Base on the faults that can be

introduced, the new mutation operators for Unity 3D C# special programming

features are designed.

RQ. 3: How effective are the new proposed mutation operators?

To answer this question, a number of experiments are performed on different case

studies with their respective test suites and mutation score ratio is calculated for

proposed operators and comparison is done with the traditional C# mutation

operators.

Focus of this research is to address the aforementioned research questions.

Introduction 11

1.7 Research Objectives

The objective of this thesis is to propose a novel set of Unity 3D C# programming

language mutation operators that can allow developers to find faults in Unity 3D

C# games before release, especially in the parts of code that use new programming

features.

1.8 Research Contribution

Research contribution of this thesis is to propose set of Unity 3D C# special

programming features mutation operators that could be used to introduce faults

in Unity 3D programs. In mutation testing, faults are seeded in original source

program by using different mutation operators, thus creating number of mutants

of original source program. Unity 3D mutation operators are proposed for the

first time that introduces the diverse faults that are currently not seeded by the

traditional existing mutation operators of the C# language.

1.9 Thesis Organization

Rest of the thesis is organized as follows: second chapter presents the literature re-

view and the related work. Proposed solution is described in third chapter. Fourth

chapter presents the implementation details. Fifth chapter is about results and

discussion and sixth chapter about conclusion and future directions of a conducted

study.

Chapter 2

Literature Review

In the software testing, mutation testing is considered as the most effective tech-

nique to check the effectiveness of the test suite. Mutants are generated from

the original program by introducing a single fault in each mutant. The faults

are minor syntactic change in the original program which is introduced using the

different mutation operators. Test cases are executed on the mutants to identify

the faults introduced. Mutants are executed against each test case to get the

different output from the original program. This chapter contains an overview of

mutation testing done for Android applications and the traditional C# mutation

operators. Purpose of the work is to identify the mutation operators for the special

programming features used for the development of mobile applications.

2.1 Mobile Applications Mutation Testing

As mobile application development is a new emerging area due to which very little

mutation testing work is done by the researchers for mobile development plat-

forms. Work is done recently for mutation testing for the Android applications

only by defining mutation operators for the new programming features used for

the Android JAVA programming [12] [39]. As mobile application development

12

Literature Review 13

programming languages uses new and unique programming features due to dif-

ferent operating system which run over the mobile hardware, so not much work

on the mutation operators to target those special features is yet done and the

domain is free to be explored. C# programming language is basically used for

web application development but it is also being used extensively for the Unity

3D game development with the special new features for game programming. Mu-

tation operators for the C# programming languages are proposed which are same

as the traditional mutation operators of JAVA and with some mutation operators

for advance features of C# programming language [40].

2.1.1 Android Applications Mutation Testing

Deng et al., (2017) proposed the 11 mutation operators for Android applications

which are not tested using existing mutation operators of the JAVA languague due

to which the test results are weak and ineffective. At first, the unique technical

Android programming features are analyzed and later novel mutation operators

are designed for those features. They proposed the novel mutation operators spe-

cific for the Android applications and implemented the proof-of-concept mutation

analysis tool for the implementation of the new Android mutation operators along

with the traditional known mutation operators. Later, they evaluated the muta-

tion operators on the eight Android applications. Empirical studies are done for

the application for results collection and thorough analysis. Comparison was done

with the mutation operators of the muJava which generates the mutants with the

traditional mutation operators.

Table 2.1 shows the mutation operators proposed for the Android special program-

ming features with description.

Literature Review 14

Table 2.1: Android programming features mutation operators

Android

Features

Cat Mutation

Operator

Mutation Operator Description

Intent Muta-

tion Opera-

tors

A/I Intent Payload

Replacement

(IPR)

Replace the second parameter of the

intent function to its default value

A/I Intent Target

Replacement

(ITR)

Replace the target of each intent with

all possible classes

Activity

Lifecycle

Mutation

Operator

A/I Lifecycle

Method Dele-

tion (MDL)

Deletes each overriding method to

force Android to call the version in su-

per class

Event

Handler

Mutation

Operators

GUI OnClick Event

Replacement

(ECR)

Replace each handler with every other

compatible handler

GUI OnTouch

Event Re-

placement

(ETR)

Replaces the event handler for each

OnTouch event

XML Muta-

tion Opera-

tors

AP Activity Per-

mission Dele-

tion (APD)

Deletes and app’s permission for its

Android Manifest.xml file one at a

time

AP Button Wid-

get Deletion

(BWD)

BWD deletes one button at a time

from the XML: layout file of the UI

AP EditText Wid-

get Deletion

(TWD)

TWD mutation operators remove each

EditText widget at a time

Literature Review 15

XML Muta-

tion Opera-

tors

AP Button Wid-

get Switch

(BWS)

BWS switches the location of the two

buttons on the same screen

Mutation

Operators

Based on

Common

Faults

AP Fail on Null

(FON)

FON add a “Fail on Null” statement

before each object is referenced

AP Orientation

Lock (ORL)

ORL mutants freeze the orientation of

any activity by inserting special lock-

ing statement in source code

Linares-Vásquez et al., (2017) extended the work of Deng et al., (2017) by defining

the more mutation operators for the Android application after the brief study of the

bugs that occurs during the Android development. They collected the large data

of the Android applications from the GitHub repository and used Stack Overflow

for the faults and bugs study during Android development. By analyzing the total

of 1,623 documents they made the faults taxonomy of JAVA and Android bugs

for the categorization of mutation operators which were later proposed. In their

work, they proposed total of 38 mutation operators for the Android programming

features. For the proposed mutation operators MDroid+ tool was developed to

implement mutation operators for analysis with the basic JAVA mutation testing

tools. The tool was executed for the total 68 applications. Mutation analysis

results of MDroid+ tool was compared with the traditional Java mutation tools.

Table 2.2 shows the proposed mutation operators along with the defined category

and description for the Android applications.

Table 2.2: Android programming features mutation operators with categories

Mutation Operators Cat Description

Activity Not Defined A/I Delete an activity <Android:name=

“Activity”/>entry in the Manifest file

Literature Review 16

Different Activity Intent A/I Replace the Activityċlass argument

Definition in an Intent instantiation

Invalid Activity Name A/I Randomly insert typos in the path

of an activity defined in the Manifest file

Invalid Key Intent A/I Randomly generate a different key in an

Put Extra IntentṗutExtra(key, value) call

Invalid Label A/I Replace the attribute “Android:label” in

the Manifest file with a random string

Null Intent A/I Replace an Intent instantiation with null

Null Value Intent A/I Replace the value argument in an

Put Extra Intent.putExtra(key, value) call with

new Parcelable[0]

Wrong Main Activity A/I Randomly replace the main activity

definition with a different activity

Missing Permission AP Select and remove an <uses-permission />

Manifest entry in the Manifest file

Not Parcelable AP Select a parcelable class, remove “

implements Parcelable” and the

@override annotations

Null GPS Location AP Inject a Null GPS location in the

location services

SDK Version AP Randomly mutate the integer values

in the SdkVersion-related attributes

Wrong String Resource AP Select a <string />entry in

/res/values/strings.xml file

and mutate the string value

Null Back End Service BES Assign null to a response variable

Return from a back-end service

Bluetooth Adapter C Replace a BluetoothAdapter.isEnabled()

Always Enabled call with“true”

Literature Review 17

Null Bluetooth Adapter C Replace a BluetoothAdapter instance

with null

Invalid URI D If URIs are used internally, randomly

mutate the URIs

Closing Null Cursor DB Assign a cursor to null before it is closed

Invalid Index Query DB Randomly modify indexes/order of query

Parameter parameters

Invalid SQL Query DB Randomly mutate a SQL query

Invalid Date GP Set a random Date to a date object

Invalid Method Call GP Randomly mutate a method call argument

Argument of a basic type

Not Serializable GP Select a serializable class, remove

“implements Serializable”

Null Method Call GP Randomly set null to a method call

Argument* argument

Buggy GUI Listener GUI Delete action implemented in a GUI listener

Find View By Id GUI Assign a variable (returned by

Returns Null Activity.findViewById) to null

Invalid Color GUI Randomly change colors in layout files

Invalid ID Find View GUI Replace the id argument in an

Activitity.findViewById call

Invalid View Focus GUI Randomly focus a GUI component

View Component Not GUI Set visible attribute (from a View) to false

Visible

Invalid File Path I/O Randomly mutate paths to files

Null Input Stream I/O Assign an input stream (For Example

reader) to null before it is closed

Null Output Stream I/O Assign an output stream (For Example,

writer) to null before it is closed

Lengthy Back End NFR Inject large delay right-after

Literature Review 18

Service a call to a back-end service

Lengthy GUI NFR Insert a long delay (that is,

Creation Thread.sleep(..)) in the GUI creation thread

Lengthy GUI NFR Insert a long delay (that is,

Listener Thread.sleep(..)) in the GUI listener thread

Long Connection NFR Increase the time-out of

Time Out connections to back-end services

OOM Large Image NFR Increase the size of bitmaps

by explicitly setting large dimensions

2.2 C# Mutation Advance Mutation Operators

Derezinska A., (2006) proposed mutation operators for C# programming language,

the advance mutation operators applicable for the C# programs are proposed in

their work along with the traditional mutation operators for the C# programming

languages. In their work the relation for the JAVA and C# mutation operators

were also defined and indicated. The object-oriented operators adopted for the

C# and the advance operators with the new programming features were studied.

Table 2.3 shows the traditional and advance C# mutation operators along with

the description used for C# mutation testing.

Table 2.3: C# Traditional and Advance Mutation Operators

Mutation Description

Operators

AMC Access modifier change

IHD Hiding variable deletion

IHI Hiding variable insertion

IOD Overriding method deletion

IOP Overridden method calling position change

IOR Overridden method rename

Literature Review 19

ISK Base keyword deletion

IPC Explicit call of a parent’s constructor deletion

PNC New method call with child class type

PMD Member variable declaration with parent class type

PPD Parameter variable declaration with child class type

PRV Reference assignment with other compatible type

OMR Overloading method contents change

OMD Overloading method deletion

OAO Argument order change

OAN Argument number change

JTD This keyword deletion

JSC Static modifier change

JID Member variable initialization deletion

JDC C#-supported default constructor create

EOA Reference assignment and content assignment replacement

EOC Reference comparison and content comparison replacement

EAM Accessor method change

EMM Modifier method change

MNC Method name change

MBC Member changed

MCO Member call from another object

MCI Member call from another inherited class

RFI Referencing fault insertion

EHR Exception handler removal

EHC Exception handling change

DMC Delegated method change

DMO Delegated method order change

DEH Method delegated for event handling change

PRM Property replacement with member field

IOK Override keyword substitution

Literature Review 20

OPD Overriding property deletion

OID Overriding indexer deletion

NDC Namespace declaration change

2.3 Critical Analysis

Although, in literature, many C# mutation operators are defined that covers some

tradition and advance features, some generic mutation operators and some specific

to the C# language features. But all of these operators are not sufficient to test

the adequacy of a test suite for Unity 3D C# special programming features like the

one used for the Android JAVA for which the new mutation operators are proposed

in the recent work by the researchers. The C# mutation operators defined are for

C#. NET framework and do not covers the special programming features of Unity

3D game development engine using C# programming language.

2.4 Gap Analysis

With the emerging field of the mobile application development along with the

increase in the users of mobile devices, the need of mutation testing is important

to check the effectiveness of mobile applications which will in turn improve the

quality of mobile softwares.

Mobile games are the video games played on feature phone, smartphones, tablets

or smart watch. Multiple game engines are used for the development of 3D and

2D mobile games. Unity 3D is an ultimate cross platform game engine developed

by Unity Technologies which is primarily used to develop both 3D and 2D games

deployed on mobile (Android, iOS, Tizen, Microsoft), desktop, VR/AR, consoles

or web. Unity 3D game engine is widely used in the mobile games development

now a day for Android and iOS platforms. Unity games are built differently from

the traditional software and use new structures, new control, and data connections.

Literature Review 21

Unity 3D game development involves several new programming features and frame-

work for game designing and development. Very little knowledge is available to

test them as a result of this weak and ineffective testing is done. Unity 3D sup-

ports the game programming in 3 different languages which are C#, JavaScript

and Boo. The most commonly used language is C# used by the developers for

Unity 3D. So, there is need of new Unity 3D C# mutation operators to generate

mutants to seed the faults using the mutation operators in the original source code

to generate more effective test suite to kill the mutants for Unity 3D C# special

programming features.

Chapter 3

Proposed Solution

In the software testing domain mutation testing is an effective testing technique

which either (1) check the fault detection effectiveness of a test suite by calculating

the mutation score by the mutants killed or (2) to guide test case generation to

kill mutants. Researchers have done work on the Android mobile applications

mutation testing in recent years, the proposed mutation testing of Android special

programming features have been discussed in the chapter 2 in detail and tables

2.1, 2.2 provide the list of all the Android mutation operators. Work done by

researchers for the C# programming language is also mentioned in chapter 2 and

the traditional along with the advance mutation operators list of C# programming

language are mentioned in the table 2.3. We have seen in the previous chapter that

so far no mutation operators exists to cover the Unity 3D C# special programming

features as compared to the Android programming features. There existing C#

mutation operators are not sufficient to assess the effectiveness of the test suite for

the Unity 3D C# games. We have proposed new Unity 3D C# mutation operators

to improve the assessment of test cases by considering the faults associated with

the Unity 3D C# scripts.

Detailed methodology steps of the proposed solution are as follows:

1. In the initial step we have studied and discussed the game development

process for the 2D and 3D games with Unity 3D game engine.

22

Proposed Solution 23

2. Special programming features of the Unity 3D C# language used for the

game development are identified.

3. The Unity 3D features are categorized for selection to propose the mutation

operators.

4. Special programming features are selected from multiple categories of Unity

3D to generate the mutation operators.

5. To cover the special programming features of Unity 3D mutation operators

for mutation testing are proposed.

6. The operators are defined such that rate of the still born mutants is mini-

mum.

Methodology steps our proposed approach is depicted in Figure 3.1.

Figure 3.1: Proposed Solution Detailed Methodology

In the next sections, we have discussed the general process of the 2D and 3D

game development using Unity 3D game engine and later have proposed a set of

Proposed Solution 24

Unity 3D C# mutation operators that will introduce diverse faults that existing

tradition/advance C# mutation operator are unable to introduce. In the later sec-

tions, we have identified Unity 3D special programming features, defined features

category and have proposed Unity 3D C# mutation operators.

3.1 Game Development Process

Unity 3D game engine is used for the development of both 2D and 3D games. Two

main essential components of the Unity 3D used for the game development are

Unity Editor and Unity scripting tool. The game development process in Unity

consists of several steps. The main life cycle of the game development consists of

following steps:

1. Game Conceptualization is the initial step before the game development. In

the process of game conceptualization following main tasks are performed:

(a) Game idea preparation

(b) Game play strategy designing

(c) Assets collection or preparation including characters, environment

(d) UI theme preparation to be used in the game

(e) Story board preparation for the game to interact with the user for

maximum time

2. Game design step is followed by game conceptualization in which the main

components of game are designed and prepared for user interaction visually

on mobile devices. For game designing Unity 3D Editor is used. In the game

design process following tasks are performed:

(a) Game user interface and user interface components designing

(b) Game characters designing with features for user interaction

(c) Game levels designing

Proposed Solution 25

(d) Game 3D environment or 2D platform designing

(e) User camera and camera projection setup for game along with game

lightening

(f) Preparing game extra assets including sounds and music

(g) Graphics and visual effects preparation

3. Game programming is performed after the game designing process in which

the core functionality of game is coded and linked with the game objects

including environment, characters, UI. Game programming is done using

Unity 3D scripting. The main steps of game programming process are:

(a) Game main functionality and logic scripting

(b) Enemy and Player AI scripting

(c) Data storage and Data Management

(d) Game Controller and Game Manager scripting

(e) UI handling

(f) Third party modules integration

4. Game testing is most important and essential process of game development

life cycle which ensures the game quality and checks the game requirements.

The main testing of the games consists of following steps:

(a) Test cases generation

(b) Functionality and Compliance testing

(c) Compatibility and Performance testing

(d) Game Memory testing

(e) Bug Reports Management

5. After complete game development and testing, game publishing is performed

on multiple stores after the game executable file is prepared.

6. Sales and marketing of the game is performed after the game release which

include game advertisement, short videos, social media marketing.

Proposed Solution 26

Figure 3.2 illustrates the game development process:

Figure 3.2: Game Development Process

3.2 Unity 3D Special Programming Features

Unity 3D game engine have special characteristics that are used for 3D and 2D

mobile game development along with the special features to code multiple games

functionalities. List of major special features used for Unity 3D programming

along with the description are as follows:

3.2.1 Rigid Bodies

Used to apply Unity 3D physics behavior on any game object. Rigid body class is

used to set force and controls of game object. Example of adding force to a game

object using a rigid body is as follows:

Proposed Solution 27

pub l i c c l a s s ExampleClass : MonoBehaviour

{

pub l i c f l o a t th rus t ;

pub l i c Rigidbody body ;

void Star t ()

{

body = GetComponent<Rigidbody >() ;

}

void Move ()

{

body . AddForce (trans form . forward ∗ 5 .0 f) ;

}

}

3.2.2 Coroutines

It’s a special feature of Unity 3D coding which can pause the execution of program

for certain time frame until instructions of yield are executed completely and

resume the normal execution from where normal execution was paused.

pub l i c c l a s s ExampleClass : MonoBehaviour

{

IEnumerator WaitAndPrint ()

{

y i e l d re turn new WaitForSeconds (5) ;

p r i n t (” WaitAndPrint ” + Time . time) ;

}

IEnumerator Star t ()

{

pr in t (” S ta r t i ng ” + Time . time) ;

y i e l d re turn StartCorout ine (” WaitAndPrint ”) ;

p r i n t (”Done ” + Time . time) ;

Proposed Solution 28

}

}

3.2.3 Player Preferences

Used to store and access player game data in device memory such as player scores,

game levels locked and unlocked information. Example code of saving the player

score is as follows:

pub l i c c l a s s SetUpPlayerPrefsExample : MonoBehaviour

{

void AddScore ()

{

PlayerPre f s . Se t Int (” Scores ” , 5 0) ;

}

}

3.2.4 Game Objects

The fundamental objects in Unity game engine that represent characters, props

and scenery are known as game objects. In the example below a game object is

created and components are added to the game objects.

pub l i c c l a s s ExampleScript : MonoBehaviour

{

void SetGameObject ()

{

GameObject p laye r ; p laye r = new GameObject (” Player ”) ;

p laye r . AddComponent<Rigidbody >() ;

p laye r . AddComponent<BoxCol l ider >() ;

}

}

Proposed Solution 29

3.2.5 Tags

Tags are the keywords assigned to the game objects. Tags are used to access

and identify the game objects in the code to perform main functionality. In the

example game object are found using tag.

pub l i c c l a s s Example : MonoBehaviour

{

pub l i c GameObject r egene ra t e ;

void CreateEnemy ()

{

i f (r e g ene ra t e == n u l l)

r eg ene ra t e = GameObject . FindWithTag (” r egene ra t e ”) ;

}

}

3.2.6 Transform

Every object in the game scene can be transformed. Transform is used to set the

position, rotation and scale (size) of game objects. Example to set the position of

game object in upward direction is explained below.

pub l i c c l a s s ExampleClass : MonoBehaviour

{

void Move ()

{

trans form . p o s i t i o n += Vector3 . up ∗ 5 .0F ;

}

}

Proposed Solution 30

3.2.7 Game Scenes

Environment, obstacles, decoration, game objects, game play designing and build-

ing is performed in the scenes in Unity editor.

pub l i c c l a s s LoadScenesA : MonoBehaviour

{

SceneManager . LoadScene (” SceneA ”) ;

}

3.2.8 Game Cameras

Game objects and environment of game is visualized by the player on the device

using the cameras. Example to set orthographic camera for 2D game environment

and objects display to the player is as follows.

pub l i c void Star t ()

{

Camera . main . o r thograph ic = true ;

}

3.2.9 Canvas

Canvas is a specified area in the game editor used to set the user interface elements.

All the UI elements are set inside the canvas in Unity editor.

3.2.10 Invoke

Invoke function are used to call method at a later time as per schedule in the code

scripting. Game object is created using the invoke function in the code below

example.

Proposed Solution 31

pub l i c c l a s s InvokeScr ip t : MonoBehaviour

{

void CallEnemy ()

{

Invoke (”Enemy” , 2) ;

}

}

3.2.11 Raycast

A ray is cast from a point of origin in a specific direction of length set by the

programmer of maximum value which is used for collision detection of the objects

in the scenes.

pub l i c c l a s s ExampleClass : MonoBehaviour

{

pub l i c C o l l i d e r c o l l ;

void Star t ()

{

c o l l = GetComponent<Co l l i d e r >() ;

}

void Update ()

{

Ray ray = Camera . main . ScreenPointToRay (Input . mousePosit ion) ;

trans form . p o s i t i o n = ray . GetPoint (100 . 0F) ;

}

}

A large number of other special programming features also exist for Unity 3D used

for game development but the main and basic programming features which are used

in the development of 2D and 3D games are explained above with appropriate code

Proposed Solution 32

example. Game play failure at the run time may occur because of incorrect use of

these special programming features during game development.

3.3 Unity 3D Features Categorization

We have categorized the Unity 3D features which are shown in the Figure 3.3. 7

high level categories are defined with basic features used in Unity 3D for develop-

ing 3D and 2D games. Specific programming feature are group together that could

affect the game development if faults are introduced in them during the develop-

ment process. From the multiple categorizes few of the basic special programming

features of the Unity 3D are selected for defining the mutation operators. To avoid

generation of the still born mutants such Unity 3D features are selected which do

not results compilation error if faults are seeded in them. The features categorizes

of the Unity 3D is as follows:

Figure 3.3: Identified Taxonomy of Unity 3D Faults

Proposed Solution 33

3.4 Proposed Mutation Operators

The proposed mutation operators to cover the Unity 3D C# special programming

features along with the example code with the output or behavior difference of

mutants as compared to the original code. Special programming features for de-

signing the mutation operators are selected from multiple categories in such a way

that no still born mutants are generated by seeding the mutation. Basic program-

ming features from each category are selected depending on its use and importance

in the Unity 3D C# game development programming.

The list of proposed mutation operators selected from the major categories along

with the name and short description is provided in the Table 3-1.

Table 3.1: List of Proposed Unity 3D C# Mutation Operators

Mutation Operators Cat Description

Changing Parameter Name DB Randomly replace the parameter values

of PlayerPrefs (PPC) in the PlayerPref Get function

Removing Parameter DB Search and Remove the parameter values

of PlayerPrefs (PPR) in the PlayerPref Get function

Invalid Parameter DB Pass the invalid random value in the

of PlayerPref (PPI) PlayerPrefs Set function parameter

Disabling Game Object ED Find and replace the SetActive value

(DGO) False for game

Invalid Scene Loading ED Load the invalid scene by replacing

(ISL) the parameter for the function

randomly SceneManager.LoadScene(1)

Changing Main Game ED Set the false value for the

Camera Type (CGC) Camera.main.orthographic = true function

OnClick Event GUI Replace the function call for the OnClick

Replacement (OCR) event

Game Orientation Lock GUI Replace the value of the

(LGO) ScreenOrientation function

Proposed Solution 34

Disabling Canvas Panel GUI Set False value for SetActive(true)

View (DCV) function

Changing Parameter UP Find and Replace the parameter values

Values of Invoke Function of the Invoke function randomly

(IPC)

Null Pointer Exception UP Call the reference of the object not

(NPE) available in the script

Game Objects Tags UP Replace the parameter value randomly

Matching (MGOT) for col.collider.tag == ”Enemy”

Finding Game Object UP Replace the parameter value randomly

with Tags (FGOT) for the function

GameObject.FindGameObjectWithTag()

Invalid Function Call UP Find and call the invalid function

for Coroutine (CIC) in the Parameter of Coroutine function

Life Cycle Method UP Find and Replace the life cycle function

Replacement (LCR) in the script

XML Manifest Activity XML Delete the <uses permission />in the

Permission Deletion (APD) XML manifest file

The 16 mutation operators are defined based on several unique features of Unity

3D C# games from different categories. These mutation operators are proposed

to cover multiple game features. The detail of each mutation operator is explained

for generating the mutant along with example code.

3.4.1 Changing Parameter Name of PlayerPrefs (PPC)

PlayerPrefs or player preferences is the most commonly used for storing and ac-

cessing the data of the player game progress in the local Unity 3D database, a

common mistake can be done by assigning the different/wrong variable or leaving

the parameter empty.

Proposed Solution 35

The mutant of the original program is created by finding the PlayerPrefs statement

and changing the parameter used in the function. This type of error can arise if the

programmer uses multiple variables for the data saving in the PlayerPrefs to store

or fetch user game data. If wrong parameter is used, the appropriate value will

not be fetched and the game behavior will be affected linked with that parameter

value fetched.

3.4.2 Removing Parameter of PlayerPrefs (PPR)

The mutant of the original program is created by finding the PlayerPrefs statement

removing the parameter used. This type of error can arise if the programmer

leaves the field without parameter to be updated later. If no parameter is used,

the appropriate value will not be fetched and the behavior of the game and player

will be affected linked with that parameter value fetched.

Proposed Solution 36

3.4.3 Invalid Parameter of PlayerPrefs (PPI)

The mutant of the original program is created by finding the PlayerPrefs statement

and using the invalid or static value of function parameter. This type of error can

arise if the programmer use invalid variable or static value for the data saving in

the PlayerPrefs to store user game data. If invalid or static parameter is used, the

appropriate value will not be stored and the behavior of the game will be affected

linked with that parameter value saved to be used for game functionality.

Proposed Solution 37

3.4.4 Changing Parameter Values of Invoke Function (IPC)

Invoke Function is an important feature of Unity 3D C# game programming which

is used to call the methods, or scenes of the game at the run time after the specific

time. Change in function name called or time of call may result in the change

in game behavior which result errors in game. By replacing the name of function

in the parameter of the Invoke function or by changing the time value of Invoke

function may cause error or change of game behavior.

Proposed Solution 38

3.4.5 Invalid Function Call for Coroutine (CIC)

A coroutine is like a function that has the ability to pause execution and return

control to Unity but then to continue where it left off on the following frame. By

Proposed Solution 39

changing the function name called in the Coroutine will generate a mutant that

will cause the error or change in the game behavior.

3.4.6 Disabling Game Object (DGO)

Any object of the game used in the environment can be accessed and controlled

using scripts, mainly objects visibility is controlled using scripts to set specific

points to enable and disable game objects during game play as per player inter-

actions. A mutant can be generated by disabling the enabled game object by

changing Boolean value for the object. The change in the Boolean value will re-

sult in hiding game object thus game behavior will be affected with the disabled

game object.

Proposed Solution 40

3.4.7 Game Object Tag Name Mutation Operators

A tag is a reference word which you can assign to one or more game objects. Tags

help programmer identify game objects for scripting purposes. Tags are useful for

triggers in Collider control scripts; they need to work out whether the player is

interacting with an enemy, a prop, or a collectable.

3.4.7.1 Game Objects Tags Matching (MGOT)

The complete game behavior can be disturbed in a game during the run time if

the wrong tag is being used for any game object which cause bugs in the game.

Proposed Solution 41

3.4.7.2 Finding Game Object with Tags (FGOT)

Tags are majorly used to find the game objects in the Unity 3D scripting to perform

multiple functionalities on them. If wrong tag is used for finding game object the

wrong result will affect the game behavior and cause multiple issues during the

game play at run time.

Proposed Solution 42

3.4.8 Life Cycle Method Replacement (LCR)

Life cycle methods are used by developers to override them to define functionalities

among those life cycle states. Life cycle method replacement change the overriding

life cycle method to force calls different life cycle method which results in different

functionality performance in calling methods which may cause issues at the run

time.

Proposed Solution 43

3.4.9 Invalid Scene Loading (ISL)

Scenes contain the environments and menus of the game. Levels are designed in

multiple scenes which are called from the scripts to load and start scene to ensure

the normal game play behavior. Scenes of games can be loaded either by calling

scene name or index of scene depending who the scenes are created and naming

convention used for scenes saving. Calling invalid scene name can cause the error

in game play.

Proposed Solution 44

3.4.10 Changing Main Game Camera Type (CGC)

Cameras are the devices that capture and display game world to the player. Unity

3D support 2 types of main camera that is, Orthographic and Prospective. Usually

perspective camera type is used for 3D games while orthographic is used for 2D

games. Changing camera type may result in complete game behavior change also

affecting the visibility of game objects.

Proposed Solution 45

3.4.11 OnClick Event Replacement (OCR)

Behind OnClick event the appropriate function set for the functionality is called.

By replacing the function call with other compatible function for OnClick event

may result in the behavior change or error during the game play at the run time.

3.4.12 Disabling Canvas Panel View (DCV)

The Canvas is the area where all UI elements placed. Disabling the enabled

canvas will hide UI components for the player interaction to perform the game

functionality causing multiple game play issues at run time.

Proposed Solution 46

3.4.13 Game Orientation Lock (LGO)

Many apps change the layout of GUI when the orientation changes but this is not

the case for the mobile games as the single orientation is set for the game and

on changing the orientation GUI of the game and game play is changed. Thus,

switching the orientation in turn leads to many faults in the game.

3.4.14 Null Pointer Exception (NPE)

The most common error faced is the Null Pointer Exception which occurs when

object reference does not exist while it is being used in the game. The Null Pointer

Proposed Solution 47

Exception causes the run time errors and bugs in the game also affecting the game

play behavior.

3.4.15 XML Manifest Activity Permission Deletion (APD)

For each Unity 3D game permissions are requested as per main functionalities

performed in the game which can be location permission, device data storage

access permission etc. These permissions are required and requested from the

user when an application is installed first or after app is successfully installed on

the device. By deleting the permission required for game from Manifest.xml file

functionality of the game can be affected during the game play.

Proposed Solution 48

By defining the above Unity 3D C# special programming features mutation oper-

ators we can be able to handle Unity 3D C# specific programming features faults

that a programmer can be do while game programming. With the proposed mu-

tation operators, different type of faults will be seeded in the program which can

relate to game programming, editor, GUI. As we know, Unity 3D C# has spe-

cial programming features for game scripting and by mistake of the programmer

in assigning the parameters, parameters values, function calling errors or faults

may occur. By combining these proposed mutation operators with the existing

mutation operators, the assessment of test cases will be improved.

Chapter 4

Implementation

4.1 Implementation

4.1.1 Overview

Mutation analysis for the mobile applications cannot be done as it is done for the

traditional languages including JAVA, Java Script programs. Mobile applications

require additional processing before they are being executed and deployed. Mobile

applications are compiled, packaged, installed and executed on mobile devices and

emulators which is different from the JAVA or other basic languages programs.

This implementation details of the proposed technique is described, we have de-

veloped a GUI based desktop application for generating mutants for Unity 3D C#

using defined and existing mutation operators which can be applied on Unity 3D

C# program. Implementation is done on JAVA language using Object Oriented

Paradigm. NetBeans IDE is used to develop tool for mutants generation.

Generic Software Architecture of tool used to generate the mutants of Unity 3D

C# is shown in Figure 4.1.

49

Implementation 50

1. Our tool takes the Unity 3D C# or Manifest XML file as an input and

traditional or proposed mutation operators can be applied on the selected

program files.

2. Mutants of the files are generated based on the selected operators in the

mutant generator process.

3. The mutant codes generated are stored separately in the respective folder

created for the each mutation operator to run the test cases to check if test

cases detect faults that are seeded in the mutants by mutation operators.

Figure 4.1: Generic tool architecture for mutants generation

The detailed process of mutation generation for Unity 3D C# games is explained

in the Figure 4.2.

1. At first the mutation operators are selected that should be used for both

C# scripts and XML file from the list of traditional and proposed mutation

operators.

2. The C# scripts mutation operators are applied directly on the source code

of the Unity 3D to be complied thus creating a new copy.

3. Similarly, XML mutation operators are applied directly to the XML file,

creating a new copy of the file.

4. The mutants are compiled to be executed on the device using the Unity 3D

editor using the Unity Remote 5 platform.

Implementation 51

5. During the process of compilation some mutants might cause the compila-

tion errors which are referred as the still born mutants which are discarded

immediately. But no such mutation operators are designed which can cause

the program syntax error leading to still born mutants generation.

6. The original program and each mutant are executed with all test cases and

output of the original programs and mutants are recorded for the analysis

of test suite effectiveness.

7. The results comparison of test cases is performed for the killed mutants by

the test cases. Mutation score is calculated according to the mutants killed

by the test cases.

Figure 4.2: Mutation Analysis Process for Unity 3D C# Games

Implementation 52

4.2 Mutant Generation Process

The working of tool starts with the main menu presented as a GUI to the user

which asks for the Unity 3D C# Scripts code as an input for mutation testing.

Then Unity 3D C# scripts files are passed to ”Mutant Generator” component.

Mutation operators are selected for mutants generation. Mutants are generated

based on the operators selected for mutation. The algorithm used for mutant

generation is explained as follows:

4.2.1 Algorithm Description

To generate mutants of given program, first, count how many time selected muta-

tion operator(s) will apply for mutant generation (lines 1-5). While loop contin-

uously read file line by line until end of file found and in each iteration of while

loop, if statement, check whether the current line contains selected operator con-

dition or not (lines 2-3). If the condition is true then increment count value by 1

Implementation 53

(line 4). The number of mutants to be generated against each mutation operator

in each script is displayed to the user (line 6). After mutants generation process

begins and number of mutants will be created as many as the value of count vari-

able (lines 9-20). The outer while loop executes until script value is available for

mutation and in each iteration of this loop, every time a new file is created with

incremented script number. Inner while loop of algorithm read original code from

the file line by line for replacement (line 14). If statement (line 12), check whether

current line contains selected operator condition or not. If the is condition true

then check the sequence in which the replacement will have to apply (lines 13-14).

For example, if tester selects “PlayerPref.SetInt” mutation operator and “Player-

Pref.SetInt” keyword found more than once in the program. Then in each mutant,

replace “PlayerPref.SetInt” parameter that already not has been replaced for the

creation of new mutant. If the condition is false then found the next appearance

of operator that has not already mutated (line 16). In line 17, write each line on

mutant file to make a copy of the original program. At the end of the outer loop,

n number of mutants will be generated.

4.3 Analysis Process

After generating mutants of the source program, next phase is to execute these

generated mutants with test cases that are developed by the tester to test the

source program. Test case executes both the original program and the mutant

with the goal that each mutant should produce different output from original

program. The detailed process of analysis along with the results is explained in

the next chapter

4.4 Tool Usage

This section includes all the user interfaces of our tool developed to generate the

mutants.

Implementation 54

4.4.1 Mutant Generation Interface

To start creating the mutants for the Unity 3D C# scripts and XML file, our tool

will take C# and XML program as input and then tester select mutation operators

that will apply on scripts source code to generate mutants of source program. Fig-

ure 4.2 shows the files selected for applying mutation operators. In the first step,

the tester will browse the C# source code or XML file and then select mutation

operators for which he/she want to generate mutants. After selection of operators

tester will press ”Next’ button to check mutants stats. The mutants count for

each script will be displayed to the user in table form. On ”Generate Mutant”

button click the mutants will be generated against each mutation operators. After

generation of mutants for the selected mutation operators, next step is to execute

test cases on these generated mutants and original program.

Figure 4.3: Source Files Selection for Mutation Analysis

Implementation 55

Figure 4.4: Mutation Operators Selection for Mutants Generation

Figure 4.5: Stats Display before Mutants Generation

Implementation 56

4.5 Test Case Execution Process

The mutants created are executed with the test cases designed by the testers to

record the output. Each test case is executed using the Unity Remote 5 platform

for running the mutants on the mobile device. The output is recorded using the

Unity 3D console for comparison.

Figure 4.6: Output of Original Program for Test Cases Execution

Figure 4.7: Output of Mutated Program for Test Case Execution

Implementation 57

After executing all mutants with test data, list of all killed and live mutants is

compared. Based on the data of killed and live mutants, assessment of proposed

operators in terms of mutation score ratio is performed.

Chapter 5

Results and Discussion

In this section, we have discussed process used for analysis of experiments result,

which we have performed on different Unity 3D C# games both 3D and 2D source

code. Using existing and proposed Unity 3D C# mutation operators, we generated

mutants of original source codes and then using dataset we executed mutants along

with original source code. During execution we maintain a record of each mutant

(killed or alive) and based upon this record, we compare our proposed mutation

operators with existing operators.

5.1 Analysis Process

After generating mutants of the source program, next phase is to execute these

generated mutants with test cases that are developed by the tester to test the

source program. Test cases are executed for both original program and mutants

with the goal that each mutant should produce different output from the original

program.

Test cases for the traditional C# mutation operators are executed for the full

statement coverage. We expected that mutation testing for Unity 3D will be

stronger than statement coverage so we used statement coverage for comparison.

The test inputs are designed manually for each game to achieve the 100% statement

58

Results and Discussion 59

coverage. All test cases for C# traditional mutation operator for each game were

executed against all the mutants generated with traditional and proposed mutation

operators. Later, newly designed test cases were executed to detected the faults

introduced using newly proposed Unity 3D mutation operators. The input for test

cases are provided using the test device with the game running on both device and

the Unity editor communicating through the Unity 3D Remote 5 platform. Test

cases output is recorded on the Unity 3D editor console.

The process for analysis is as follows:

1. Against each mutation operator selected, mutants are created.

2. After the compilation of code, Unity Remote 5 platform installed on the mo-

bile device is run with the Unity 3D editor to execute test cases on mutants

to record output on Unity Console for test cases that are executed.

3. Existing and new test cases are executed for original and mutants by exe-

cuting on device and output of test cases is recorded on the Unity 3D Editor

for comparison.

4. After collecting results for the test cases executed for mutants and original

program, results comparison is being performed.

5. If result of the mutant for test case is different from the result of original

program, mutant is said to be killed by that specific test case.

6. Analysis of live and killed mutants with the existing and new test cases is

done.

7. Mutation score is calculated for the existing and new test cases.

8. Mutation score comparison is done to check the effectiveness of new and

existing test cases

The detailed analysis process is explained in the Figure 5.1

Results and Discussion 60

Figure 5.1: Results Analysis Process

5.2 Case Studies

For the evaluation of our proposed Unity 3D C# proposed mutation operators, the

developed tool with the new and existing mutation operators was used to generate

the mutants, which were compiled, and executed on the real Android device. Test

cases were executed against all the mutants and results were recorded.

Total of 4 different Unity 3D games are used for the evaluation of Unity 3D C#

proposed mutation operators. Games were selected based on the programming

practices and features used along with the availability of source code. All the

Results and Discussion 61

games selected covers the major games genre of mobile devices. The detail of case

studies is as follows:

• Sample Unity 3D C# project was developed with all the C# features to check

the mutant generations using the proposed and existing mutation operators.

As the sample game project was prepared so it is not available on the Google

Store and was only used for experiment. The game was prepared with the

2 different scenes including the 4 main C# scripts with all Unity 3D special

programming features for which the mutation operators were proposed.

• Archery is a 2D Unity 3D C# game with the landscape play mode with

only 1 game scene. The game is freely available on the Google Play store.

According to Google Play game version 3.0.1 is available for the users under

the Arcade category which was updated on the store on December 2017

with more than 10,000,000+ installs and with the 3.8 game rating provided

by the 127,822 users [41]. The game is developed by the Innovative games

developers [42] that are specialized for the 2D games. The game code is

freely available from the Unity asset store with the name of Bow and Arrow

[43]. Game consists of main 1 scene with the bowAndArrow main script with

473 line of code.

Results and Discussion 62

Figure 5.2: Archery 2D Game Google Play Store

Figure 5.3: Archery Game 2D Google Play Store Information

• Tanks is a 3D top down Unity 3D C# single and multiplayer game with

the landscape game play mode. Game is freely available on the Google Play

store [44]. According to Google Play game version 1.0 is available for the

users under the Arcade category which was updated on the store on October

Results and Discussion 63

2016 with more than 10,000+ installs and with ranking of 4.1 stars given by

295 users. The game is developed and released by the Unity Technology Aps

which is an official Unity 3D Google Play store [45]. The game code is freely

available on the Unity asset store provided for the developers as a tutorial

code [46]. Game consists of one main scene along with Android Manifest

file and multiple game C# scripts to perform the game main functionalities.

The main script of game with 180 line of code is GameManager.cs script of

the game.

Figure 5.4: Tanks 3D Game Google Play Store

Results and Discussion 64

Figure 5.5: Tanks 3D Game Google Play Store Information

• Monster Kill Shooting Adventure is a 3D top down game with Tower Defense

game idea developed in Unity 3D with the C# scripting with the landscape

game play mode. Game is available on the Google Play store freely for the

users. Game is categorized as an Action game on the Google Play store with

total of 28 MB apk size [47]. According to Google play game version 1 is

available for the users which was last updated by the developers on May,

2018.Game have more than 5000+ installs and with the raking of 3.8 stars

on the Google Play store. Game is developed and released by the HalfBrain

Games [48]. Game code is provided by the developers for the research work

purpose to conduct the experiments. Game main C# file consists of 316 line

of code with the name of GameGUI.cs along with other main functionality

scripts and an Android Manifest file.

Results and Discussion 65

Figure 5.6: Monster Kill Shooting Adventure Google Play Store

Figure 5.7: Monster Kill Shooting Game Google Play Store Information

Detail about case studies along with source line of code (SLOC) for C# scripts

with main functionality of game is provided in the Table 5.1.

Results and Discussion 66

Table 5.1: Details of Unity 3D Games

Game File Name Source Lines of Code

(SLOC)

Sample Game

Bullet.cs 49

GameGUI.cs 115

Menu.cs 17

PlayerManager.cs 47

Game Scenes 2

Archery Game

bowAndArrow.cs 473

camMovement.cs 31

AndroidManifest.xml 15

Game Scene 1

Tanks Game

AndroidManifest.xml 95

TankMovement.cs 79

TankHealh.cs 54

ShellExplosion 31

CameraControl.cs 104

GameManager.cs 180

Game Scene 1

Monster Kill

Player.cs 76

Enemy.cs 117

EnemyManager.cs 120

GameGUI.cs 316

Turret.cs 147

TurretManager.cs 80

AndroidManifest.xml 25

Game Scenes 4

Results and Discussion 67

5.3 Mutants Generation

According to the process of applying mutation analysis for Unity 3D C# games,

we used a set traditional mutation operators of C# that are Access Modifier

Change (AMC), This Keyword Deletion (JTD), Member Variable initialization

Deletion (JID), Method Name Change (MNC) along with the sixteen Unity 3D

C# mutation operators proposed in our research to generate the mutants and

compile them to be executed on the device using Unity 5 platform.

Traditional mutation operators were selected based on major C# programming

features used by the developers in game development. 39 C# traditional and

advanced mutation operators were proposed by Dereziska [40]. On mapping the

traditional and advanced mutation operators of C# with the programming fea-

tures used in game development, few mapped C# programming features mutation

operators were selected for comparison.

Generating a mutant and compiling them on Unity 3D took the time of almost 5

minutes on HP Windows PC with the 3.30 GHz Intel i5 Processor, 8 GB memory

with the dedicated 1 GB DDR AMD Radeon R5 graphics card to support easy

and smooth execution of Unity 3D codes.

The totals of 675 mutants were generated using the traditional and proposed

mutation operators with the maximum of 230 mutants of the Monster Kill Shooting

Adventure 3D game. Mutants were generated for both C# scripts and Android

Manifest XML files. A mutant that cannot be compiled into an APK is called the

still born mutant and is not counted in the results. No such mutants for any of

the case study were made.

Some mutants are not killed by any of the test case which are known as equivalent

mutants Out of total 181 mutants generated using the existing mutation operators

53 equivalent mutants are generated while using the proposed mutation operators

55 equivalent mutants were generation from the total of 494 mutants. The detailed

analysis of the generated mutants with the existing C# mutation operators and

proposed Unity 3D C# mutation operators are described in Table 5.2.

Results and Discussion 68

Table 5.2: Mutants Generated with Existing and Proposed
Mutation Operators

Game File C# Mutants Unity 3D Mutants

Sample
C# Scripts 15 40

Manifest File 0 0

Archery Game
C# Scripts 48 76

Manifest File 0 5

Tanks Game
C# Scripts 55 131

Manifest File 0 7

Monster Kill
C# Scripts 63 230

Manifest File 0 5

TOTAL 181 494

Figure 5.8: Mutants Generated Comparison with Traditional and Proposed
Mutation Operators

Results and Discussion 69

5.4 Comparison and Analysis

We used test cases for the Unity 3D C# games which were generated by hand.

Test cases were made manually to achieve the full statement coverage for all the

traditional mutation operators. Test inputs to achieve the 100% statement cover-

age for the designed test cases were provided manually from the touch events while

executing the game on real mobile device attached with the Unity 3D editor using

the Unity Remote 5 platform to record the output of test case with the provided

input.

For all case studies used for the experiment, 128 of 181 C# traditional mutants

and 128 of 494 Unity 3D C# mutants were killed by the traditional mutation

operators test cases. Equivalent mutants were identified by manual analysis.

After executing mutants with the test cases for the mutants generated with the

existing mutation operators and with the proposed mutation operators the results

are recorded and evaluated. Mutation score is calculated with the number of killed

mutants.

Table 5.3 shows mutation scores after the equivalent mutants are filtered out.

Results display the percentage that how many mutants are killed. The mutation

score for the C# traditional mutants is 1.00 for all the case studies with the mean

of 1.00 and a median of 1.00 showing that all the mutants are killed by the test

cases designed for the traditional mutation operators. For the proposed Unity 3D

C# mutation operators, mutation scores ranged from 0.19 (in Monster Kill game)

to 0.47 (in Archery game) with a mean of 0.30 and a median of 0.27 excluding

the Android Manifest XML files. The mutation score of the mutants killed by

the traditional test cases executed on the mutants generated with the Unity 3D

C# mutants shows that only mutants generated with the traditional mutation

operators are killed for the Unity 3D games and mutants specific to the Unity 3D

games special programming features are not killed with the traditional mutation

operators which can be seen with the mutation scores of the traditional test cases

executed on the Unity 3D mutants. Thus, traditional mutation operators test cases

Results and Discussion 70

are not sufficient to kill the mutants generated with the new mutation operators

specific to Unity 3D special programming features and new test cases are required

to kill the mutants generated with new mutation operators.

Table 5.3: Mutation Analysis Results for C# and Unity 3D C# Mutation
Operators with Traditional C# Test Cases

Game Files
C# Mutants Unity 3D Mutants

Total Killed Equi MS Total Killed Equi MS

Sample
C# 15 9 6 1.00 40 9 6 0.23

XML N/A 0 0 0 0.00

Archery
C# 48 36 12 1.00 76 36 12 0.47

XML N/A 5 0 0 0.00

Tank
C# 55 40 15 1.00 131 40 15 0.31

XML N/A 7 0 0 0.00

Monster
C# 63 43 20 1.00 230 43 20 0.19

XML N/A 5 0 0 0.0s0

Total 181 128 53 494 128 53

Median 51.5 32 13.5 1.00 76 38 13.5 0.27

Mean 45.25 32 13.25 1.00 118.22 32.67 13.28 0.30

Experiment shows that the existing test cases used to kill the mutants generated

from the C# traditional mutation operators for all the case studies were not suf-

ficient as very low number of mutants were killed which were generated using

the proposed mutation operators. Thus, the Unity 3D C# special programming

features mutants require additional test cases to detect the new faults seeded.

Results and Discussion 71

Figure 5.9: Mutation Scores of Traditional C# Test Cases for Existing and
Proposed Operators

Figure 5.10: Total Number of Mutants Generated with Traditional and Pro-
posed Mutation Operators

Results and Discussion 72

With the new proposed mutation operators, the mutants generated are strong and

can not be killed with the traditional C# test cases. To kill the mutants generated

with the proposed mutation operators new additional test cases were designed

which are generated using Def-Use (DU) Path coverage to kill the mutants as for

multiple features used for Unity 3D, most of the special programming features are

not used in same function or script in which they are defined. Test cases were

generated and input is provided for test cases from the device such that complete

DU Path is executed and the fault introduced is detected by recording the output

of mutant program and comparing it with original program output.

128 of 181 C# traditional mutants and 437 of 494 Unity 3D C# mutants were

killed by the DU Path coverage test cases. Equivalent mutants were identified by

manual analysis. Mutation score is calculated with the number of killed mutants.

Table 5.4 display the number of C# traditional and proposed mutants killed with

new test cases designed using DU Path coverage criteria.

Table 5.4: Mutation Analysis Results for C# and Unity 3D C# Mutation
Operators with New Test Cases

Game Files
C# Mutants Unity 3D Mutants

Total Killed Equi MS Total Killed Equi MS

Sample
C# 15 9 6 1.00 40 34 6 1.00

XML N/A 0 0 0 0.00

Archery
C# 48 36 12 1.00 76 64 12 1.00

XML N/A 5 4 1 1.00

Tank
C# 55 40 15 1.00 131 116 15 1.00

XML N/A 7 5 2 1.00

Monster
C# 63 43 20 1.00 230 210 20 1.00

XML N/A 5 4 1 1.00

Total 181 128 53 494 437 57

Median 51.5 38 13.5 1.00 76 64 12 1.00

Mean 45.25 32 13.25 1.00 118.22 104.22 14.00 1.00

Results and Discussion 73

Figure 5.11: Total Number of Mutants Killed Generated with Traditional and
Proposed Mutation Operators with New Test Cases

By the comparison of mutation scores it can be concluded that the faults in-

troduced by the proposed mutation operators are not seeded with existing C#

traditional mutation operators thus making more strong and Unity 3D special

programming features mutants. Our proposed mutation operators are useful as

they introduce the Unity C# special programming features faults in the program

that are currently not seeded by the existing traditional mutation operators. For

the detection of such faults, additional test cases are required. By combining our

proposed mutation operators with the existing mutation operators of C#, assess-

ment of the test cases can be measured in a better way.

Through the literature review and experimentation of different case studies for our

proposed solution the following research questions can be answered.

RQ. 1: Can we use the traditional C# programming language and Android mu-

tation operators for Unity 3D?

Results and Discussion 74

Through literature review it was observed that the work is only done for the

Android mobile applications special programming features mutation testing and

no mutation operators exist which can cover the special programming features for

the Unity 3D C#. Traditional C# mutation operators can be used for the general

C# programming features mutation but cannot be used for the Unity 3D special

programming features mutation. While Android specific mutation operators are

used for native android application programming features which are JAVA based

and can not be used to detect Unity 3D C# specific programming features.

RQ. 2.1: What are the special features of the Unity 3D C# programming language

which are not covered by the traditional C# and Android mutation operators?

Special programming features for Unity 3D C# includes scenes creation in Unity

editor, game objects initialization, physics implementation, animations, handling

input touch events, game logic, scenes rendering, GUI rendering, coroutines, lifecy-

cle methods handling, decommissioning, backend and local services, permissions,

software development kit version compatibility. Traditional C# mutation opera-

tors can be used for the general C# programming features mutation but cannot be

used for the Unity 3D special programming features mutation, as well as Android

special programming features using JAVA language so they cannot be used for

Unity 3D C# programming language features.

RQ. 2.2: How to design new mutation operators for the Unity 3D C# special

programming features?

Game development is studied and discussed along and Unity 3D features cate-

gories. Using the Unity 3D features categories developed for the Unity 3D, some

of the basics and general programming features are selected which are used in 3D

and 2D game development using Unity 3D game engine for proposing new muta-

tion operators to seed the faults for specific Unity 3D programming features not

covered by the tradition C# mutation operators.

RQ. 3: How effective are the new proposed mutation operators?

Results and Discussion 75

A number of C# mutation operators have been proposed in the literature that

can be used to introduce the faults in Unity 3D C# programs basic syntax. Tradi-

tional mutation operators of C# are used to mutate very basic features of the C#

program for the .NET development. As Unity 3D game development uses C# pro-

gramming language for the game coding with new special programming features

introduced for game development which is not covered by the traditional mutation

operators. Using those traditional and new mutation operators the experiments

are performed for the multiple case studies and the test cases are executed.

Through detailed experimentation it is found that by executing the traditional

C# test cases for mutants, mutation score of test cases is very low for mutants

generated with proposed mutation operators as explained in Table 5.3. Through

the results it can be concluded that mutants generated with new mutation opera-

tors are difficult to kill with test cases designed to kill the mutants generated with

traditional C# mutation operators.

So, new test cases with the stronger coverage criterion are required to kill the

mutants specific to Unity 3D special programming features generated with new

proposed Unity 3D C# mutation operators.

Chapter 6

Conclusion and Future Work

In this research work, we have proposed an innovative approach to test Unity 3D

C# games by using the mutation analysis. We have defined new mutation op-

erators specific to Unity 3D games using the C# programming language for the

game development which covers the unique characteristics of Unity 3D. Tool is

implemented to generate the mutants using proposed mutation operators. Exper-

iments are conducted on the 4 Unity 3D games of different genre and mutation

analysis is performed. Results from the experiments show that mutation testing

can be enhanced by taking in to account new programming features used for Unity

3D games development. Our approach provides more comprehensive testing for

Unity 3D games by taking in to consideration the special Unity 3D C# program-

ming features, game configuration or Manifest file along with the traditional C#

features as well.

Our proposed mutation operators introduced diverse faults in the Unity 3D C#

scripts and XML files that existing operators are unable to seed so it would not

be wrong to say that existing C# traditional mutation operators do not subsume

proposed mutation operators.

We performed experiments on different real world case studies and the results

indicate that mutation score for test cases designed to detect faults introduced

with traditional mutation operators are unable to kill mutants generated with

76

Conclusion and Future Work 77

new proposed mutation operators. Experiments results also indicates that with

new mutation operators strong mutants are designed which covers Unity 3D C#

special programming features. To kill mutants generated with proposed mutation

operators new additional test cases are required with stronger coverage criterion.

To kill mutants with proposed mutation operators large amount of additional test

cases are required with stronger coverage criterion to detect the faults introduced

with proposed mutation operators. During experiments 50% to 75% new test

cases were generated to detect Unity 3D C# faults introduced with new proposed

mutation operators.

Some steps for the mutation testing for the Unity 3D C# are done manually

and also the cost of mutation testing for the Unity 3D games is expensive due

to the test execution and recording of the test cases results. Excessive time is

required to perform the experiment for a single small scale case study. Some of

the manual steps of the mutation testing for Unity 3D C# can be automated and

performance can be improved, as well as there are many aspects of the Unity 3D

game development which are not yet considered which includes the features used

for the server based games, game services, real time multiple player game coding

features. So, work on additional mutation operator can also be done.

Bibliography

[1] M. A. Jamil, M. Arif, N. S. A. Abubakar, and A. Ahmad, “Software testing

techniques: A literature review,” in Information and Communication Tech-

nology for The Muslim World (ICT4M), 2016 6th International Conference

on. IEEE, 2016, pp. 177–182.

[2] F. Redmill, “Theory and practice of risk-based testing,” Software Testing,

Verification and Reliability, vol. 15, no. 1, pp. 3–20, 2005.

[3] M. Grindal, J. Offutt, and S. F. Andler, “Combination testing strategies:

a survey,” Software Testing, Verification and Reliability, vol. 15, no. 3, pp.

167–199, 2005.

[4] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing, 3rd ed.,

2011.

[5] M. Jorgensen and M. Shepperd, “A systematic review of software development

cost estimation studies,” IEEE Transactions on Software Engineering, vol. 33,

no. 1, pp. 33–53, 2007.

[6] E. Dustin, Effective Software Testing: 50 Ways to Improve Your Software

Testing, 1st ed. Addison-Wesley Longman Publishing Co., Inc., 2002.

[7] M. E. Khan, F. Khan et al., “A comparative study of white box, black box and

grey box testing techniques,” International Journal of Advanced Computer

Science and Applications, vol. 3, no. 6, pp. 12–15, 2012.

[8] B. Korel, “Automated software test data generation,” IEEE Transactions on

Software Engineering, vol. 16, no. 8, pp. 870–879, 1990.

78

Bibliography 79

[9] I. Jacobson, The unified software development process, 1st ed. Pearson Ed-

ucation India, 1999.

[10] M. R. Woodward, “Mutation testing—its origin and evolution,” Information

and Software Technology, vol. 35, no. 3, pp. 163–169, 1993.

[11] A. J. Offutt, R. P. Pargas, S. V. Fichter, and P. K. Khambekar, “Mutation

testing of software using a mimd computer,” in 1992 International Conference

on Parallel Processing. Citeseer, 1992, pp. 257–266.

[12] L. Deng, J. Offutt, P. Ammann, and N. Mirzaei, “Mutation operators for

testing android apps,” Information and Software Technology, vol. 81, pp.

154–168, 2017.

[13] W. E. Wong and A. P. Mathur, “Reducing the cost of mutation testing: An

empirical study,” Journal of Systems and Software, vol. 31, no. 3, pp. 185–196,

1995.

[14] Y. Jia and M. Harman, “An analysis and survey of the development of mu-

tation testing,” IEEE Transactions on Software Engineering, vol. 37, no. 5,

pp. 649–678, 2011.

[15] C. Byoungju and A. P. Mathur, “High-performance mutation testing,” Jour-

nal of Systems and Software, vol. 20, no. 2, pp. 135–152, 1993.

[16] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward,

“Mutation analysis.” Georgia Inst. of Tech. Atlanta School of Information

and Computer Science, Tech. Rep., 1979.

[17] M. Woodward and K. Halewood, “From weak to strong, dead or alive? an

analysis of some mutation testing issues,” in Software Testing, Verification,

and Analysis, 1988., Proceedings of the Second Workshop on. IEEE, 1988,

pp. 152–158.

[18] P. Ammann and J. Offutt, Introduction to software testing, 2nd ed. Cam-

bridge University Press, 2016.

Bibliography 80

[19] A. J. Offutt and R. H. Untch, “Mutation 2000: Uniting the orthogonal,” in

Mutation testing for the new century. Springer, 2001, pp. 34–44.

[20] M. E. Delamaro, J. Maidonado, and A. P. Mathur, “Interface mutation: An

approach for integration testing,” IEEE Transactions on Software Engineer-

ing, vol. 27, no. 3, pp. 228–247, 2001.

[21] M. E. Delamaro, J. C. Maldonado, and A. P. Mathur, “Integration testing

using interface mutation,” in Software Reliability Engineering, 1996. Proceed-

ings., Seventh International Symposium on. IEEE, 1996, pp. 112–121.

[22] K. N. King and A. J. Offutt, “A fortran language system for mutation-based

software testing,” Software: Practice and Experience, vol. 21, no. 7, pp. 685–

718, 1991.

[23] M. E. Delamaro, J. C. Maldonado, and A. Mathur, “Proteum-a tool for the

assessment of test adequacy for c programs user’s guide,” in PCS, vol. 96,

1996, pp. 79–95.

[24] J. Offutt, Y.-S. Ma, and Y.-R. Kwon, “The class-level mutants of mujava,” in

Proceedings of the 2006 International Workshop on Automation of Software

Test. ACM, 2006, pp. 78–84.

[25] S. Kim, J. A. Clark, and J. A. McDermid, “Investigating the effectiveness of

object-oriented strategies with the mutation method,” in Mutation Testing

for the New Century. Springer, 2001, pp. 4–4.

[26] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “Efficient javascript muta-

tion testing,” in Software Testing, Verification and Validation (ICST), 2013

IEEE Sixth International Conference on. IEEE, 2013, pp. 74–83.

[27] O. A. L. Lemos, F. C. Ferrari, P. C. Masiero, and C. V. Lopes, “Testing

aspect-oriented programming pointcut descriptors,” in Proceedings of the 2nd

workshop on Testing aspect-oriented programs. ACM, 2006, pp. 33–38.

[28] U. Praphamontripong and J. Offutt, “Applying mutation testing to web

applications,” in Software Testing, Verification, and Validation Workshops

Bibliography 81

(ICSTW), 2010 Third International Conference on. IEEE, 2010, pp. 132–

141.

[29] S. P. F. Fabbri, M. E. Delamaro, J. C. Maldonado, and P. C. Masiero, “Mu-

tation analysis testing for finite state machines,” in Software Reliability Engi-

neering, 1994. Proceedings., 5th International Symposium on. IEEE, 1994,

pp. 220–229.

[30] R. M. Hierons and M. G. Merayo, “Mutation testing from probabilistic finite

state machines,” pp. 141–150, 2007.

[31] M. Trakhtenbrot, “New mutations for evaluation of specification and im-

plementation levels of adequacy in testing of statecharts models,” in Test-

ing: Academic and Industrial Conference Practice and Research Techniques-

Mutation, 2007. Taicpart-Mutation 2007. IEEE, 2007, pp. 151–160.

[32] S. Fabbri, J. Maldonado, P. Masiero, M. Delamaro, and E. Wong, “Mutation

analisys applied to validate specifications based on petri nets,” in Proceeding

of the 8th IFIP Conference on Formal Descriptions Techniques for Distribute

Systems and Communication Protocols, pp. 329–337.

[33] R. Nilsson, J. Offutt, and J. Mellin, “Test case generation for mutation-based

testing of timeliness,” Electronic Notes in Theoretical Computer Science, vol.

164, no. 4, pp. 97–114, 2006.

[34] B. Lindström, S. F. Andler, J. Offutt, P. Pettersson, and D. Sundmark,

“Mutating aspect-oriented models to test cross-cutting concerns,” in Soft-

ware Testing, Verification and Validation Workshops (ICSTW), 2015 IEEE

Eighth International Conference on. IEEE, 2015, pp. 1–10.

[35] R. A. Oliveira, E. Alégroth, Z. Gao, and A. Memon, “Definition and eval-

uation of mutation operators for gui-level mutation analysis,” in Software

Testing, Verification and Validation Workshops (ICSTW), 2015 IEEE Eighth

International Conference on. IEEE, 2015, pp. 1–10.

Bibliography 82

[36] A. J. Offutt and J. Pan, “Automatically detecting equivalent mutants and

infeasible paths,” Software testing, verification and reliability, vol. 7, no. 3,

pp. 165–192, 1997.

[37] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The ora-

cle problem in software testing: A survey,” IEEE transactions on software

engineering, vol. 41, no. 5, pp. 507–525, 2015.

[38] Y. Jia and M. Harman, “Higher order mutation testing,” Information and

Software Technology, vol. 51, no. 10, pp. 1379–1393, 2009.

[39] M. Linares-Vásquez, G. Bavota, M. Tufano, K. Moran, M. Di Penta, C. Ven-

dome, C. Bernal-Cárdenas, and D. Poshyvanyk, “Enabling mutation testing

for android apps,” in Proceedings of the 2017 11th Joint Meeting on Founda-

tions of Software Engineering. ACM, 2017, pp. 233–244.

[40] A. Derezińska, “Advanced mutation operators applicable in c# programs,”

in Software Engineering Techniques: Design for Quality. Springer, 2006, pp.

283–288.

[41] InnovativeGames, “Archery,” (Last Accessed July, 2018). [Online]. Avail-

able: https://play.google.com/store/apps/details?id=com.innovativeGames.

archery

[42] GooglePlay, “Innovative,” (Last Accessed July, 2018). [Online]. Available:

https://play.google.com/store/apps/developer?id=Innovative+games

[43] UnityAssetStore, “Bow,” (Last Accessed July, 2018). [Online]. Available:

https://assetstore.unity.com/packages/templates/bow-arrow-32783

[44] UnityTechnologies, “Tanks,” (Last Accessed July, 2018). [Online]. Available:

https://play.google.com/store/apps/details?id=com.unity3d.tanksiii

[45] GooglePlay, “Unity,” (Last Accessed July, 2018). [Online]. Available: https:

//play.google.com/store/apps/developer?id=Unity+Technologies+ApS

https://play.google.com/store/apps/details?id=com.innovativeGames.archery
https://play.google.com/store/apps/details?id=com.innovativeGames.archery
https://play.google.com/store/apps/developer?id=Innovative+games
https://assetstore.unity.com/packages/templates/bow-arrow-32783
https://play.google.com/store/apps/details?id=com.unity3d.tanksiii
https://play.google.com/store/apps/developer?id=Unity+Technologies+ApS
https://play.google.com/store/apps/developer?id=Unity+Technologies+ApS

Bibliography 83

[46] UnityAssetStore, “Tutorial,” (Last Accessed July, 2018). [Online]. Avail-

able: https://assetstore.unity.com/packages/essentials/tutorial-projects/

tanks-reference-project-80165

[47] HalfBrainGames, “Monster,” (Last Accessed July, 2018). [Online]. Avail-

able: https://play.google.com/store/apps/details?id=com.halfbrain.monster.

kill.shootout.adventure

[48] GooglePlay, “Halfbrain,” (Last Accessed July, 2018). [Online]. Available:

https://play.google.com/store/apps/developer?id=HalfBrain+Games

https://assetstore.unity.com/packages/essentials/tutorial-projects/tanks-reference-project-80165
https://assetstore.unity.com/packages/essentials/tutorial-projects/tanks-reference-project-80165
https://play.google.com/store/apps/details?id=com.halfbrain.monster.kill.shootout.adventure
https://play.google.com/store/apps/details?id=com.halfbrain.monster.kill.shootout.adventure
https://play.google.com/store/apps/developer?id=HalfBrain+Games

	Author's Declaration
	Plagiarism Undertaking
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Overview
	1.2 Software Testing
	1.3 Mutation Testing
	1.4 Mutation Testing of Mobile Applications
	1.5 Problem Statement of Thesis
	1.6 Research Questions
	1.7 Research Objectives
	1.8 Research Contribution
	1.9 Thesis Organization

	2 Literature Review
	2.1 Mobile Applications Mutation Testing
	2.1.1 Android Applications Mutation Testing

	2.2 C# Mutation Advance Mutation Operators
	2.3 Critical Analysis
	2.4 Gap Analysis

	3 Proposed Solution
	3.1 Game Development Process
	3.2 Unity 3D Special Programming Features
	3.2.1 Rigid Bodies
	3.2.2 Coroutines
	3.2.3 Player Preferences
	3.2.4 Game Objects
	3.2.5 Tags
	3.2.6 Transform
	3.2.7 Game Scenes
	3.2.8 Game Cameras
	3.2.9 Canvas
	3.2.10 Invoke
	3.2.11 Raycast

	3.3 Unity 3D Features Categorization
	3.4 Proposed Mutation Operators
	3.4.1 Changing Parameter Name of PlayerPrefs (PPC)
	3.4.2 Removing Parameter of PlayerPrefs (PPR)
	3.4.3 Invalid Parameter of PlayerPrefs (PPI)
	3.4.4 Changing Parameter Values of Invoke Function (IPC)
	3.4.5 Invalid Function Call for Coroutine (CIC)
	3.4.6 Disabling Game Object (DGO)
	3.4.7 Game Object Tag Name Mutation Operators
	3.4.7.1 Game Objects Tags Matching (MGOT)
	3.4.7.2 Finding Game Object with Tags (FGOT)

	3.4.8 Life Cycle Method Replacement (LCR)
	3.4.9 Invalid Scene Loading (ISL)
	3.4.10 Changing Main Game Camera Type (CGC)
	3.4.11 OnClick Event Replacement (OCR)
	3.4.12 Disabling Canvas Panel View (DCV)
	3.4.13 Game Orientation Lock (LGO)
	3.4.14 Null Pointer Exception (NPE)
	3.4.15 XML Manifest Activity Permission Deletion (APD)

	4 Implementation
	4.1 Implementation
	4.1.1 Overview

	4.2 Mutant Generation Process
	4.2.1 Algorithm Description

	4.3 Analysis Process
	4.4 Tool Usage
	4.4.1 Mutant Generation Interface

	4.5 Test Case Execution Process

	5 Results and Discussion
	5.1 Analysis Process
	5.2 Case Studies
	5.3 Mutants Generation
	5.4 Comparison and Analysis

	6 Conclusion and Future Work
	Bibliography

